

sports clearance:

return to sports decision making Ann Smith, DPT Brian Hardy, AT

when is it OK to return to sports?

A decision-based RTP model

When can I play again?? "When ready " - the use of time as the sole determination of when an athlete may resume practice or play is a critical error

Kevin Wilk, PT DPT FAPTA Return to Sport Participation Criteria Following Shoulder Injury: A Critical Commentary, August 2020

Recovery for the youth athlete for ACL is typically slower than that of an adult

Weight-bearing and ROM restrictions
Meniscus/articular cartilage procedures
Delayed strength recovery
59% achieved ≥ 85% quad symmetry
at 6 months

Decreased neuromuscular control Rapid periods of growth Slower strength recovery Poor rates of passing RTS criteria Higher reinjury rates (up to 32%)

Psychological factors

Not being able to play Social isolation Self-esteem Fear of pain/reinjury Parental influence

What is the likelihood of RTS after an injury?

At what level??

Arthroscopic shoulder capsulolabral repair:

86% RTS 73% same level play

Arthroscopic Bankart repair:

Satisfaction: 92.3% 49.5% same level play

Rehab < 6 months: 23.1% significant reinjury

>6 months: 9.6% significant reinjury

Kevin Wilk, PT DPT FAPTA <u>Return to Sport Participation Criteria Following Shoulder Injury:</u>
<u>A Critical Commentary</u>, August 2020

DCH ACL prospective study

DCH ACL prospective study

Mechanism of Injury

DCH ACL prospective study

ACLR

Return to sport: 71% - 83%

probability of RTS @12 months:

Limb Symmetry Index ≥ 90 (2x)

• IKDC \geq 95 (3X)

Completes rehab!

Re-Injury Rate: 1.5% - 37.5% (graft rupture or contralateral side)

** Flexion deficit of 5°:

2x risk of graft rupture

** Anterior knee laxity > 3mm:

2x risk contralateral ACL tear

** Female soccer player s/p ACLR:

5x higher rate of new ACL injuries

The Limb Symmetry Index (LSI) can be calculated as the ratio of the involved limb over the uninvolved limb using almost any objective test.

- •Knee extension isometric/isokinetic strength
- •Knee Flexion isometric/isokinetic strength
- •Single Leg Hop for distance
- •Single Leg Side Hop for distance
- •Crossover Hop for distance
- •Triple Hop for distance
- •6 Meter Hop for time
- Lateral Hop test
- •Single leg Vertical Hop test

IKDC The International Knee Documentation Committee is a patient reported, knee-specific outcome measure that has been shown to be a reliable, valid and responsive tool for patients with knee conditions.

Creighton decision-based RTP model

Creighton et al. (2010)

General Decision-Making Factors

- Medical Factors
- Sports Risk Modifiers
- Decision Modifiers

step 1 – evaluation of health status

medical factors

Medical Factors

- Patient demographics
- Symptoms
- Personal medical history
- Signs (physical exam)

- Labs / imaging
- Functional screens / test
- Psychological state
- Potential seriousness / Long term considerations

step 2 – evaluation of participation risk

sports risk factors

Sports Risk Factors

- Desired sport(s) participated in
- Desired position(s) in the sport participated in
- Limb dominance
- Competitive level
- Ability to protect the injury / surgery

step 3 – decision modification

decision modifiers

Decision Modifiers

- Timing & Season
- Pressure from athlete
- External pressure
- Masking the injury
- Conflict of interest
- Fear of litigation

return to sport clearance continuum

return to sport clearance continuum

Draovitch et al. (2022)

Phases of RTSCC Thoughts

- Repair
 - Healing process
- Rehab & recovery
 - Restore normal pre-injury arthokinematics, restore associate
 / disassociate body segments.
- Reconditioning
 - Skill development, force and load volume tolerance
- Performance
 - Is the time between 1st RT practice/competition and subsequent RT practice/competition in the next season
- Pre-season & Training Camp
 - Re-evaluate ability to tolerate load and force volume form previous season

progressive RTS screening

HOW TO **USE THE** RTSCC

- Select 1 Sample Test from each performance category, or choose your own
- Conduct test during relative category time period from Testing Progression
- Satisfactory test results allow for progression through continuum

STRENGTH & ENDURANCE

POWER

GENERAL & SPORT CONDITIONING

RTS LOAD PERFORMANCE

SELF REPORTED OUTCOME SCORE

LOAD MONITORING & MANAGEMENT

*Load monitoring should occur daily (weekly, at minimum) throughout the RTSCC to ensure training prescriptions are met

SAMPLE TESTS, BY PERFORMANCE CATEGORY

Movement & Core

- · Motion Capture
- FMS/SFMA/QMA
- SEBT/Y-Balance
- McGill
- · Bunkey
- Watkins

Strength & **Endurance**

- Dynamometer
- · Force Plate
- Isokinetic
- 1RM (or %1RM)

Power

- Jumps · VBT
- Hop Test
- Med Ball Toss

VO2max

 Wingate · 300 Yard Shuttle

General & Sport

Conditioning

Yoyo Test

RTS Load Performance

Focus of test should be on injured site demands for sport environment. Example: Vail Sport Test

Self Reported Outcome Score

Re-assess all tested variables on a regular basis, especially during transitions.

Load Monitoring: Accelerometry, GPS, Heart Rate, RPE, Subjective Wellness Questionnaires, Psychological Readiness

participation specific breakdown

Dayton Children's Hospital One Children's Plaza Dayton, Ohio 45404-1815

Ph: 937-641-3000 www.childrensdayton.org

Ortho Rehabilitation Beavercreek Dept: 937-641-3024

Return to Sport Progression:

The patient may participate in the following aspects of athletic participation:

General Warm-up:

☑ Full participation in team general warm-up with NO restrictions

Notes: If there are change in direction (CID) or change in speed (CIS) aspects of this warm-up please understand that 75% of total speed and/or pace should be done.

Dynamic Warm-up:

□ Full participation in team dynamic warm-up with NO restrictions

Notes: The same focus for CID/CIS is in place for dynamic warm-ups as well.

Strength and Conditioning;

Full participation in team strength / weight room activities with NO restrictions

Importicipation in team conditioning activities with small restrictions on CID / CIS as stated above

Team Drills:

Participation in team drills to include:

☑ Individual skills – This category of athletic activity includes sport specific activities that are done without other player(s) or teammates. (Sports specific example: dribbling, passing, free throws, set shots)

☑ Individual agility drills - (Sports specific example: ladder drills at 75 to 80% of her maximum speed with change in direction and change in speed drills)

⊠ Controlled one on one drills — These are individual drills that can be done with another teammate or player, that does not include contact, but should have a mechanism to control potential injury risk situation, which that could include direct supervision, repetitions and/or time. (Sports specific example: this can be chair drills, jab step drills, etc.)

🖾 Controlled team drills - These are drills that typical full player interactions that have set controls in place like direct

Dayton Children's Hospital

1

General Warm up

Dynamic Warm up

Strength & Conditioning

Team Drills

Individual drills

Controlled drills

Non-controlled drills

Non-contract drills

Contact drills

supervision, repetitions and/or time. (Sports specific example: 5 on 0 offensive drills to include running offensive sets, inbounds plays, etc. There should be no defense involved in these drills)

Overall is doing well I would like to see her get involved in controlled basketball type drills and /or skills that don't have contact with them. Conditioning is also a focus for her at this time as well. If there are activities that she cannot perform, then skills or conditioning would be appropriate.

I am more than happy to answer any questions you might have. Thank you for your understanding as well as patience with this process.

Brian Hardy, AT

Ortho Rehab
Email: Hardyb2@childrensdayton.org
Direct phone: (937) 947-0061 (call or text)

Dayton Children's Hospital

general case/clinical examples

high school baseball player - aclr

return to sport activities - aclr

middle school basketball athlete - aclr

references

Creighton, D., Shrier, I., Shultz, R., Meeuwisse, W., & Matheson, G. O. (2010). Return-to-Play in Sport: a decision-based model. *Clinical Journal of Sport Medicine*, *20*(5), 379–385. https://doi.org/10.1097/jsm.0b013e3181f3c0fe

Shrier, I. (2015). Strategic Assessment of Risk and Risk Tolerance (StARRT) framework for return-to-play decision-making. *British Journal of Sports Medicine*, 49(20), 1311–1315. https://doi.org/10.1136/bjsports-2014-094569

Draovitch, P., Patel, S., Marrone, W., Grundstein, M. J., Grant, R. G., Virgile, A., Myslinski, T., Bedi, A., Bradley, J. P., Williams, R. J., Kelly, B. T., & Jones, K. J. (2022b). The Return-to-Sport Clearance Continuum is a novel approach toward return to sport and performance for the professional athlete. *Arthroscopy, Sports Medicine, and Rehabilitation*, 4(1), e93–e101. https://doi.org/10.1016/j.asmr.2021.10.026

Taberner, M., Cohen, D. D., Carter, A., & Windt, J. (2022). 'Where is the load?' Revisiting the Strategic Assessment of Risk and Risk Tolerance (StARRT) framework for return to sport by including an athlete's sport-specific training capacity? *British Journal of Sports Medicine*, *56*(15), 832–834. https://doi.org/10.1136/bjsports-2022-105573

